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Extracellular vesicles (EVs) are nano-sized lipid bilayer vesicles released by virtually every cell
type. EVs have diverse biological activities, ranging from roles in development and homeostasis
to cancer progression, which has spurred the development of EVs as disease biomarkers and drug
nanovehicles. Owing to the small size of EVs, however, most studies have relied on isolation

and biochemical analysis of bulk EVs separated from biofluids. Although informative, these
approaches do not capture the dynamics of EV release, biodistribution, and other contributions to
pathophysiology. Recent advances in live and high-resolution microscopy techniques, combined
with innovative EV labeling strategies and reporter systems, provide new tools to study EVs in
vivo in their physiological environment and at the single-vesicle level. Here we critically review
the latest advances and challenges in EV imaging, and identify urgent, outstanding questions in
our quest to unravel EV biology and therapeutic applications.

Knowledge of EV biogenesis pathways and biological activities has grown rapidly in

the past decade! (Fig. 1a,b). EVs are membrane-enclosed structures that are released

into the extracellular milieu by all organisms and cell types studied so far. EVs are a

diverse family in which subtypes have been defined based on subcellular origin, size,

and composition: endosome-derived vesicles (including multivesicular endosome-derived
exosomes with a diameter of 50-150 nm and secretory autophagosome-derived EVs);
ectosomes and other microvesicles that bud from the plasma membrane (PM) as small as
exosomes or up to several pm in size; midbody remnants released by dividing cells (Box

1); migrasomes trailing behind migrating cells2-3; apoptotic bodies dislodged from dying and
disintegrating cells; and large oncosomes released by transformed cells with exaggerated
membrane plasticity (Fig. 2a and Table 1). Recent discoveries reveal additional subclasses
of microparticles and nanoparticles, such as exophers*>, exomeres8, supramolecular attack
particles’, and elongated particles®. Initial discoveries implicated EVs in cellular adherence
(as ‘adherons’)? and clearancel® in the early 1980s, and in immune regulation in the
mid-1990s11. EVs also play crucial roles in neurodegenerative diseases, cancer progression,
metabolic homeostasis, angiogenesis, inflammation, neuronal plasticity, migration, trophic
support, and pathogenic infections!2-15, These roles are primarily supported by the capacity
of EVs to shuttle molecules from one cell to another.

Despite the clear importance of EV biology, EV research faces challenges imposed by
the small size and heterogeneity of EVs. Most studies have used bulk separation and
characterization of heterogeneous populations of EVs from biological fluids or extended,
large-scale in vitro cell cultures. These approaches allow robust characterization’6 at

the population level—for example, size and molecular profiles—but removing EVs from
their context precludes insight into subcellular origin, release and uptake dynamics, and
half-life. Separation can also disrupt fragile components such as branched glycans (Box
1), potentially altering EV functionality. Furthermore, studies in two-dimensional (2D)
monocultures do not necessarily reflect what occurs in vivo.

Recent advances in live and high-resolution microscopy, combined with novel EV labeling
strategies, now allow us to interrogate the composition and behavior of EVs at the single-
vesicle level in living organisms1’=20 (Fig. 1a). Functional transfer of EV proteins and RNA
can also be assessed using novel reporters in vivo?1:22 and in vitro23. These developments
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open new vistas in EV biology, providing the means to examine previously intractable issues
such as assessing the lifespan of EVs in vivo. Here we review the state-of-the-art in EV
labeling and tracking in animal model systems. We identify pitfalls and propose solutions
and best practices. Finally, we discuss how recent advances in imaging can address open
questions in EV biology, from biogenesis to uptake and function, thereby enhancing the
development of EV therapeutics.

Tagging strategies, microscopy technology, and animal models

Lipid dyes.

Labeling strategies that allow imaging with subcellular resolution are necessary for imaging
EVs. In recent years, several such strategies or applications have been developed, ranging
from novel lipid dyes (Box 1) to luminal dyes and genetic labeling (Table 2 and Fig. 2).

Lipid dyes (for example, PKH67, DiR/DiD, MemGlow) have been widely applied to label
EVs with various excitation and emission wavelengths?4, including the infrared range

for greater penetration through tissues for in vivo studies. However, the application of
lipophilic dyes to study EVs is complicated by unbound dye, aggregate and micelle
formation, promiscuous labeling of non-EV particles, and the long half-life25. Labeling
protocols should therefore limit dye concentrations during labeling, remove free dye after
labeling, include appropriate controls (for example, ‘dye only’ control in EV solvent), and
consider using multiple differentially stained EV populations to demonstrate absence of dye
transfer or vesicle aggregation after co-isolation28. Recently, MemGlow?” was reported to be
brighter and less prone to aggregate formation compared with traditional lipid dyes?®.

Lipid dyes can be applied directly to producer cells followed by EV isolationl®. However,
it is unknown whether cell labeling affects EV release or function, or equally labels EV
subtypes. Lipid dyes might also affect membrane—membrane fusion, fluidity of membrane
proteins, membrane stiffness and EV size?8. As the half-life of lipid dyes greatly exceeds
that of EVs2930, EV degradation after cellular uptake can be masked by recycling and
redistribution of fluorescent dye. Therefore, lipophilic dye labeling of EVs may be best
suited for short-term studies31.

Dye labeling of the EV lumen.

Dyes such as carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) and calcein-AM
label proteins in the EV lumen3%:32, Their dependence on luminal esterases for conversion
into a fluorescent product may produce fewer false-positive EV signals than lipophilic dyes
but probably restricts labeling to a subpopulation of esterase-containing EVs33.

Fluorescent and bioluminescent protein EV reporters.

Various genetically encoded reporters have been developed to label all EVs or subtypes
(Box 1) using fluorescence or bioluminescence. Labeled proteins expressed in the cytosol
can be shuttled into the lumen of both exosomes and ectosomes (Fig. 2b)22. Addition

of a palmitoylation signal associates the reporter with the inner leaflet (Box 1) of PM-
derived EVs in vivo (Fig. 2¢)34. For labeling of specific EV subtypes, reporters (including
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GFPs, RFPs, and the bioluminescent ThermoLuc) can be attached to EV cargos (for
example, syntenin or tetraspanin (TSPAN; Box 1) family members (TSPAN4, CD63, CD81
and CD9)2:17.19.26.35 of which CD63 is most widely used). Alternative scaffolds and
double labeling strategies36 can be considered to permit subtype detection. In contrast to
fluorescent proteins, bioluminescent proteins emit signal after substrate addition with a
high signal-to-noise ratio but comparatively lower spatiotemporal resolution3’. Therefore,
bioluminescence-based reporters (gLuc-lactadherin, GlucB) are predominantly used in small
animal models to track EV biodistribution at whole-animal and organ scales38-39 (Table 2).
More recently, a third category of EV reporter using bioluminescence resonance energy
transfer (BRET) has been described (PaImGRET), allowing EV biodistribution analysis and
in vivo quantification from whole animal to super-resolution without requiring multiple
reporters0,

Excitingly, genetic labeling allows access to the entire fluorescent protein toolbox,
including photoswitching and photoactivation, biosensors and bimolecular fluorescent
complementation (Box 1). However, genetic labeling also comes with challenges. Labeling
transmembrane proteins might disrupt conformation or cause steric hindrance (Box 1) of
ligand—receptor interaction and organotropism*1-43. EV surface-associated reporters may
also be prone to proteolytic cleavage**, removing the signal®°. Reporter overexpression
may affect cellular signaling, EV cargo loading, or endogenous EV production and
trafficking. Although a recent study demonstrated that CD63-GFP labeling of EVs only
minimally perturbed the EV proteome?®, other studies reported alterations in endolysosomal
trafficking®®, suggesting context-specific effects. Overexpression may also misdirect the
reporter protein to unintended EV subtypes. Moreover, the amount of fluorescence emitted
by the producing cell will ordinarily overpower the fluorescent signal of small EVs
(approximately one millionth of the cell volume) in the immediate vicinity. One solution

is the use of pH-sensitive fluorophores (for example, pHluorin), which are quenched in
acidic cellular organelles but detected upon EV release, as successfully applied in vitro#7-50
and in vivol” (Fig. 2d). A second strategy is degron tagging, whereby cytosolic signal in the
producing cell is degraded, while the signal in EVs persists®® (Fig. 2e).

Epitope targeting of EV surface proteins.

EV-enriched surface proteins and glycans can be targeted to visualize and characterize
EVs in live and fixed cells (Fig. 2f). Pre-labeling of glycans on the PM with fluorescent
hyaluronic acid binding complex (fHABC) allows live visualization of EV budding

and fission from the cell surface®2. Fluorescently labelled antibody fragments, such

as nanobodies or fragment antigen-binding (Fab) domains, can also target EV-enriched
proteins, with the advantages of eliminating the need for a secondary antibody and their
smaller size compared to intact immunoglobulins. These strategies are compatible with most
microscopy approaches®? and allow imaging at single-EV resolution®*. With these tags,
imaging EVs near the producing cells can be difficult if the epitope is present on both EVs
and the PM. Depending on the resolving power of the imaging modality, the use of EV
capture®® or immobilization strategies®® may be necessary.
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A ‘one size fits all’ EV reporter does not exist (yet), and a particular reporter should be
chosen based on the biological question and available imaging equipment. The specificity
of the strategies to label EVs should preferably be validated with super-resolution and/or
ultrastructural techniques. Along these lines, several recent studies have used combinations
of correlative light and electron microscopy (CLEM; Box 1), immuno-electron microscopy
(IEM), and/or scanning electron microscopy (SEM) to validate in vitro and in vivo
approaches!’:19:48.49 (Taple 2).

Apart from successful labeling, live imaging of EVs in vivo also requires a dedicated
imaging set-up. ldeally, the set-up is suitable for deep tissue imaging while being resolutive
and sensitive enough to observe EVs without inducing phototoxicity (Fig. 1b). This

means relying on fast but often diffraction-limited systems (Box 1). Super-resolution
microscopy (SRM)—for example, stochastic optical reconstruction microscopy (STORM)
and photoactivated localization microscopy (PALM)—improve resolution to the nanometer
scale, but often require fixation and are time-consuming. Other SRM approaches better
suited for live-cell imaging of EV uptake and processing are structured illumination
microscopy (SIM) and stimulated emission depletion microscopy (STED). All SRM
techniques depend on high photon intensities, complicating detection of smaller EVs and
increasing the risk of photobleaching and phototoxicity (Box 1), especially when imaging
larger volumes in vivo over time. This renders some of the current SRM techniques
incompatible with robust live imaging of EVs in vivo.

What is the best fluorescence microscopy system to study EV biology in vivo? The answer
depends on the specific research question and the physiological and pathological context
(Table 3). Confocal laser scanning microscopy (CLSM) can detect EVs in the sub-200-nm
range, track their uptake by living cells, and their dynamic intracellular distribution on a
time scale of seconds. However, EVs will appear as a small set of pixels by light microscopy
and insufficient structural detail is attained to determine EV diameter and distinguish single
EVs from EV clusters, dye aggregates, or dye-labeled protein aggregates and other particles.
In addition, tracking of rapidly moving EVs (for example, in circulation’-19) and/or longer
time-lapses require high-speed imaging with systems such as spinning disk microscopy and
selective plane illumination microscopy (SPIM). These set-ups allow fast acquisition of EV
movement, image larger volumes in vivo, and limit photobleaching and phototoxicity®”.
However, cells might be negatively affected by illumination even before they start to display
morphological changes such as membrane blebbing®7+28. Subtle impacts of prolonged
imaging (for example, on cellular metabolic state) must be kept in mind, as they may affect
EV release quantitatively and/or qualitatively. Emerging techniques, including lattice light-
sheet microscopy (LLSM), could prove instrumental to enable sustained high-resolution live
imaging with minimal photobleaching and phototoxicity®.

IEM and CLEM allow validation of EV-labeling approaches; for example, to confirm
proper association with intraluminal vesicles (ILVs; Box 1)17:194849 These approaches
can be used in in vitro cultures and in vivo models to study aspects of the EV lifespan
like extracellular fate post-secretion or subcellular distribution in receiving cells1?:19.60,
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Importantly, EM provides ultrastructural resolution and label-free visualization of EVs in
their native environment. In addition, immunolabeling detects proteins at the single-EV or
single-1LV level. However, IEM with CLEM is restricted to a posteriori imaging of fixed
samples.

Model organisms.

Molecular processes involved in EV biogenesis, secretion, and uptake can be studied as
isolated processes using in vitro approaches. However, the physiological quantities, content,
release dynamics, natural targets, and stability of EVs are likely to be affected by the 3D
microenvironment (Box 1). Particularly when studying EVs in the context of intercellular
communication, one of the main paradigms in the field, a relevant context is essential. The
use of primary cell sources and 3D models is therefore arguably a much-needed step to
provide more physiological relevance compared to 2D monocultures of immortalized cell
lines in vitro.

Drosophila melanogaster is an attractive model system for studying EVs in tissue
organization, development, and systemic crosstalk61:62. Wnt and Hh-containing EVs have
been observed ex vivo in D. melanogaster wing imaginal discs53-65, In addition, D.
melanogaster has been used to study EV biology during mating behavior and in adaptive
immunity®. Recently, an EV subpopulation from Rab11-positive multivesicular bodies
(MVBs) was shown to be evolutionarily conserved in flies and human cells*. The worm
Caenorhabditis elegans is also an interesting model organism to study inter-animal EV
communication with fluorescently labeled EVs87 and EV biogenesis mechanisms using the
ultrastructural resolution of EMB88:69,

Imaging of more complex tissues, like those from vertebrates, comes with additional
restraints (Table 4 and Fig. 3). The smaller the observed particle, the more important

optical accessibility of the surrounding tissue becomes to reduce noise. For instance, a
chorioallantoic membrane (CAM) model system allows the visualization of CD63-positive
and CD44-positive EVs in vivo*8.70, The zebrafish (Danio rerio), as a transparent vertebrate
model, allows continuous live imaging of the blood flow of endogenous EVs and EVs
exogenously administered throughout the embryol7:19. This model has permitted the
exploration of EV biology in unprecedented detail”* (Fig. 3c,d), revealing correlates of

EV characteristics and function®3. In mice, functional EV cargo transfer from immune

to neuronal cells and between tumor cells has been observed?122, as well as stroma—
glioblastoma interactions, including microRNA (miRNA) transfer1872_ still, live imaging

of EVs in mice is currently restricted to tissues immediately adjacent to the imaging window
or to larger EVs, as small EVs probably escape detection in these models8:22.73 (Fig.

3b). Imaging less accessible areas or across organs often requires organ extraction and

ex vivo (post-fixation) analysis’4, and is possible only with sufficient EV accumulation

over time. Moreover, sites of accumulation might not equate with sites of function. These
considerations have complicated efforts to understand EV physiology in mammalian models.

Thus, each model organism has its own strengths and weaknesses. Live imaging of single
EVsin D. rerio, CAM, D. melanogaster, and C. elegans is highly realistic (Fig. 3e,f) in
contrast with murine models. Although mice models display a higher degree of relevance
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to human physiology, the applicability of non-mammalian model systems to study human
pathologies remains considerable: 82% of all disease-related genes are conserved in D. rerio,
75% in D. melanogaster, and >65% in C. elegans’"". For example, disease-related models
of neurodegenerative pathologies and tumor development have been introduced over the past
decade’”:"8. Therefore, while considerations regarding relevance to human pathophysiology
are important for any model system, these considerations should not block the access to a
superior level of insight in smaller model organisms or preclude important questions from
being addressed. D. melanogaster, C. elegans and D. rerio allow fundamental investigations
in cell biology and development and are often vastly superior to murine models with

regard to optical accessibility, genetic amenability, costs, and suitability for medium- or
high-throughput approaches (Table 4). For example, exogenous tagging of proteins and
tissue-specific expression using gene traps (Box 1) is well established using the GAL4-UAS
system’®. Various CRISPR-Cas9 and CRISPR-Cas12a systems are available for functional
studies in vivo8081  allowing loss- and gain-of-function studies and endogenous tagging

and live imaging of proteins at endogenous expression levels (although these levels may

not be sufficient to reliably follow small-sized particles such as EVs). Additionally, these
models can be used as ‘pre-mouse’ models, where mice are subsequently deployed for key
validation steps. Such strategies are consistent with the *3R’ principles in animal research.
The choice of model system should therefore depend on the research question, the necessary
level of resolution (single versus bulk EVs), and the required throughput (Table 4).

Imaging EV biogenesis, release, and distribution

In vitro studies revealed that most cells release EVs continuously and/or adapt release in
response to triggers*9:82.:83_ Similarly, most cells can take up EVs. Bulk EV isolation from
culture media thereby neglects the subset of EVs that has been released and recaptured

or does not spread beyond cell—cell interfaces. Moreover, culture media components and
2D versus 3D culture methods significantly affect EV release and EV composition84-89,
Furthermore, little is known about bulk or subtype EV release dynamics or its dependence
on characteristics of specific tissues and conditions (growth, homeostasis, pathology,
specific triggers). Live imaging techniques now let us grasp these temporal, spatial, and
conditional EV dynamics.

Imaging EV biogenesis and release.

EVs have two main subcellular origins: intracellular compartments and the PM. Although
biogenesis at the PM is synonymous with release, EV release from intracellular
compartments requires multiple steps, from ILV or autophagic vacuole biogenesis to
organelle fusion with the cell surface (Fig. 2a).

Recent developments have enabled live visualization of PM-generated EVs by various
approaches. Direct budding and fission of EVs into the extracellular milieu has been
visualized in living cells after PM labeling with fHABC (fluorescent hyaluronic acid binding
complex) in various cell types®? (Fig. 2c). Lectins (Box 1) such as wheat germ agglutinin
(WGA) have also been used to label the surface of migrating cells and detect the formation
of migrasomes on retraction fibers®0. Alternative approaches have exploited migrasome-
enriched transmembrane proteins such as TSPAN4 to track migrasome formation live in
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migrating cultured cells and during embryonic development in D. reric?39L. Fluorescently
tagged cytosolic proteins enriched in PM-derived EVs, such as midbody remnants, can also
be harnessed to track biogenesis and uptake2%:92, Immune cell synaptic microvesicle release
can be studied on planar-supported lipid bilayers containing fluorescently labelled triggers
of cargo loading into EVs via CLEM and STORM techniques®3-54. These approaches

may allow study of the molecular machinery of EV generation in an ideal setting for
super-resolution microscopy.

To visualize exosome release, one successful approach is to image MVB-PM fusion.

The acidic late-endosomal pH underlies the reason that PM fusion results in a burst

of fluorescence from (super ecliptic) CD63-pHIuorin®3, which can be observed by

live microscopy approaches, including total internal reflection fluorescence (TIRF) and
spinning-disk microscopy#7:49:50. This approach depends on fast acquisition times or
dynamic CLEM to distinguish full MVVB-PM fusion from rapid kiss-and-run motions that
are inefficient in exosome release®® (Fig. 2d). CD63-pHIluorin provides single-cell spatial
information of release with high temporal resolution4”49:50, But this approach is best suited
for flat surfaces (for example, the basolateral side of cells) and shorter time acquisitions

at single-cell level, and hence less suitable than luciferase-coupled CD63 for medium-

and high-throughput screens of EV biogenesis modulators®4. Dual-color microscopy of dual-
tagged reporters (pHIuorin-CD63-mScarlet) allows MVBs to be tracked before fusion?8,
while other reporter combinations can unravel the molecular identity of MVBs that fuse
with the PM®0. However, using CD63-pHIuorin to visualize MVVB-PM fusion remains
challenging in vivo due to the lack of high-speed and high-resolution modalities with limited
phototoxicityl”.

Imaging ILV formation in MVBs to study putative exosome biogenesis processes is
equally challenging, as most live approaches lack single-vesicle resolution. The induction
of enlarged endosomes by overexpressing GTPase-defective Rab5 improves resolution, but
alters MVB maturation and function®. Moreover, MVBs may be destined for lysosomal
degradation rather than EV secretion, limiting their relevance for exosome biogenesis.

The giant secretory MVB-like compartments from D. melanogaster accessory glands allow
unperturbed confocal and super-resolution visualization of intracellular sorting events and
colocalization analysis of fluorescently labelled cargo proteins on ILVs in vivo®®, but these
processes may be specific to specialized cells.

Future developments are needed to combine measurements of ILV generation, exosome
release, and PM budding simultaneously; for example, using high-speed 3D imaging.

A clever approach to visualize protein trafficking has already revealed differences in
endosome- and PM-derived EV proteomes®6. Understanding these processes in further
detail will let us interfere with formation and/or release of EV subclasses and provide an
invaluable asset in our quest to attribute specific functions to EV subtypes in vivo.

Imaging EV distribution.

After EV release in vivo, the microenvironment plays a major role in EV distribution and
function. Apart from EV-intrinsic factors (for example, adhesion molecules), the local 3D
architecture, extracellular matrix (ECM)®7 and biological barriers between organs affect
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EV diffusion and influence the physiological role of EVs (Fig. 3a). As these constraints
determine local retention4”-98 versus distant transport and may not be fully recapitulated in
vitro, the need for realistic in vivo models of EV distribution is clear (Fig. 3).

Although murine studies are limited mostly to organ scale26 and disclose only the “final
destination’ of EVs, smaller, transparent organisms allow subcellular resolution!® and live
tracking of EV diffusion and transport (Table 4). Bioluminescent labeling, radiolabeling,
and metabolic labeling are compatible with the former strategy, whereas the latter typically
employs fluorescent protein- and lipid-labeling strategies.

Compared with studying endogenous EVSs, isolation and injection of exogenous EVs permits
fine control of engineering and dosing for optimal half-life and functional43 studies. Such
studies have suggested rapid removal by tissue and cell types with sustained phagocytic
capacity, even within 5 min after injection®®. Although EV injection does not recapitulate
the earliest aspects of the EV lifespan, two recent in vivo studies demonstrated that pre-
labeled injected tumor EVs did not deviate considerably in fate from physiological EVs that
are endogenously released in the blood flow!”:19 (Fig. 3c,d).

Yet, it is not clear whether these examples are sufficient to warrant a generalized

verdict concerning all EVs and all aspects of EV biology, especially regarding mRNA
transferl90, Indeed, exogenous administration incompletely mimics physiological EV release
levels (unless approximated by sustained delivery methods101), and physiological and
pathological factors that might influence endogenous EV subset(s) might be absent in
vitro84-89 EV subtypes isolated from in vitro cultures, some of which would normally

act locally, would also artificially reach non-physiological sites upon injection in vivo.

For example, EVs involved in ECM deposition and modulation4”-102 might normally

act near the cell of origin, as would EVs released at immunological or neurological
synapses3®:53.103,104 1n addition, anatomical differences in vascular permeability (for
example, liver versus brain), pathological conditions affecting endothelial barrier function,
or antiviral mechanisms restricting EV diffusion could alter the efficiency of EV propagation
and uptake®?105 Imaging the release and biodistribution of endogenous EV subsets

in vivo under various conditions will reveal how EVs cross biological barriers under
physiological conditions, for which only indirect proof is currently available; for example,
intravenously injected EVs in the brain196:107, Ultimately, comparative studies of both
endogenous and exogenous EV administration are needed. Studying endogenous EVs will
show physiological concentrations and dynamics of EV release and biodistribution that
highlight the best sites and frequencies of injection. This will help us to interpret exogenous
EV studies and will permit finer control of certain EV-intrinsic variables. Together, these
comparisons will inform EV targeting approaches for therapeutics.

Imaging interaction and uptake of EVs by recipient cells and related

functions

The EV lifespan is often depicted as cell A releasing EVs that reach cell B, where
endocytosis and (intraluminal) cargo delivery trigger a phenotypic response. Although
this communication paradigm is exciting and supported by literature, EVs can also act
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in an autocrine fashion or have other ‘delivery-independent’ extracellular functions such as
ECM modulation, PM receptor engagement or transfer of EV-resident proteins to recipient
cells108-110 (Fig, 4a).

Imaging interaction of EVs with recipient cells.

EVs can function by engaging PM-localized receptors at the target cell membrane, such

as in antigen presentation, as super-cytokines, or as carriers of morphogens and ligands

for pattern recognition receptors#2:54:63.108,111-113 \whereas uptake of EVs has been amply
demonstrated by (live) imaging, visualization of EV interaction with the PM has been
reported on just a few occasions®®, and only recently with live imaging in vitro®9114 and

in vivol”19, Direct observation1® might currently be limited due to a lack of suitable
reporters. Indeed, whereas most studies adding labeled EVs to target cells show intracellular
accumulation rather than PM labeling, this does not preclude previous EV-PM interaction,
especially as functional cargo delivery appears to be a rare event from the ‘bulk EV flow’
perspective. For certain EVs, uptake might indeed be a prerequisite to function, but for
other EVs, uptake followed by degradation could instead reflect an end-of-life event after
signaling through PM receptors. To date, most reporter systems for EV function have
focused on cytoplasmic cargo delivery rather than signal induction. Understanding fusion-
independent EV functions thus requires combined microscopy approaches, such as CLEM
(Fig. 4b), in vitro3>:60.113 and in vivol7:19.61 to cover the full range from whole organism to
subcellular at sufficient resolution with light-microscopy or EM ultrastructural resolution.

Imaging cellular uptake of EVs.

EVs are widely reported to deliver contents into the cytoplasm of recipient cells such

as signaling proteins, RNA binding proteins, genetic material, metabolites, and enzymes.
However, we know little about the fusion events or transporter systems necessary for

such delivery. Often, studies follow uptake in bulk, and lack the resolution to study the
fate of single EVs. Recently, EM has been used to examine EV uptake in vivol’19,

Live imaging approaches can reveal other details of EV fate, such as acidification of
EV-containing compartments after uptake in vitro?® and in vivol?, distinguishing ‘storage’
from degradation (Fig. 4c). V-ATPase (Box 1) inhibitors might be required if uptake and
degradation are highly efficient in target cells or to facilitate detection of rare events. Note
that the choice of dye (for example, lipid or genetic protein labeling) determines what is
being followed after EV uptake. Over time, labels might no longer represent intact EVs, but
rather the trafficking of the label itself or of lipid or protein fragments.

Imaging EV function in recipient cells.

EVs elicit phenotypic responses in proximally and distally located cells. Reporter systems
have been developed to visualize transfer of MRNAs21:22.100 miRNAs39116 shRNAs23, and
proteins!l?. Cytoplasmic delivery presupposes endosomal escape by EV-endosome fusion

to avoid lysosomal degradation of EV cargos. So far, detection of cargo transfer by live
imaging is limited to induction of a global signal at the cellular scale (Fig. 4d). Further
resolution is needed to locate and elucidate endosomal escape, demanding new technological
developments for single-molecule cargo tracking and to observe potential fusion (Box 1) of
endocytosed EVs with the host membrane. Interestingly, in vivo mouse studies indicate that
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cargo transfer occurs at low ‘efficiency’ in the absence of a specific stimulus2::190, However,
in certain pathological models, the functional uptake of EVs can be higher!18, highlighting
the need to study pathological situations in model organisms.

Several reports indicate a trophic support function of EVs via lysosomal degradation?:119,
Lysosomal targeting can be studied by EM17:1° (Fig. 4e) or by live imaging using

EV reporters with different acid sensitivity2%:120, Live imaging in vivo revealed rapid
internalization and degradation of injected or endogenous EVs by professional phagocytes
(for example, macrophages and monocytes) and especially pinocytes (for example,
scavenger endothelial cells). Therefore, some EVs might function without message
deliveryl7:19, Although trophic function is not strictly incompatible with ‘message
transfer’, a yet-unresolved question is whether EV-mediated communication is stochastic
or deterministic from a donor cell perspective. Do cells release a large amount of EVs
agnostically, letting the recipient cell determine whether to respond via an ‘activation status’
that determines cytoplasmic cargo delivery182 Or do cells release a limited number of
‘magic bullet’ EVs that are tailored for specific communication? The latter is currently
supported in the immunological synapse setting3>:53:60 put is perhaps less evident beyond
this close cell—cell contact setting. These ‘magic bullets’ might be present within the main
flow but possess molecular traits that promote capture, facilitate back-fusion (Box 1), or
prevent degradation. Thus, tracking bulk EV flow may divert our attention from the rare
EV-target cell interactions, the ‘magic bullets’ that do not follow bulk flow fate.

Technological strategies are important to monitor events in the transfer process'2, but
perhaps the most pressing need is to develop more fundamental knowledge of rare, ‘magic-
bullet’ events. When we know the players, we can image the co-packaging of cognate
molecules and targeting molecules into ILVs and EVs to follow EV lifespan events in real
time, from biogenesis to target cell interactions.

Conclusion

Imaging technology has matured such that we can study most details of the EV

lifespan in vivo using diverse tags and microscopy approaches, especially in optically
transparent organisms. What is at stake is profound. Imaging biogenesis will distinguish EV
subpopulations perhaps associated with distinct functions, and enable a firm nomenclature.
By following the biodistribution of EVs in vivo, we will not only assess their capacity to
cross biological barriers but also gain insight into their range of actions and their efficiency
in reaching target cells previously identified in vitro. In vitro technologies can then be used
to dissect mechanisms in more detail, lifting the veil around the important events that in vivo
imaging has started to reveal”3:106.122,

How EVs act as mediators of intercellular signaling is poorly understood. By following the
fate of EVs in vivo, we will gain insight into their in vivo targets and functions. Direct
imaging of the release of EV contents into recipient cells is needed to identify whether cargo
transfer or signaling interaction (or both), is responsible for the effects of EVs. Although
most studies focus on EV functions requiring EV uptake and cargo transfer into recipient
cells, mounting evidence points towards extracellular roles for EVs involving neither uptake
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nor cargo delivery#2:63108,111,112,123 It js unclear how common extracellular roles are in
vivo compared to intracellular functions, and whether EV's mainly act systemically rather
than locally. The rapid clearance of the majority of injected EVs by the liver and spleen
might indicate that many EVs function in waste disposal or trophic support. Therefore, it

is important to determine the route taken by endogenous EVs in vivo and the amount of
EVs necessary to impact target tissues. Following specific subclasses of EVs in vivo will aid
in addressing these key questions, and reveal whether EV communication is stochastic and
inefficient or rather relies on specialized EVs to transfer messages.

Knowing the in vivo characteristics of EVs, such as their half-life, biodistribution and
targeting mechanisms, also supports their clinical application as biomarkers, drug carriers,
or intrinsic modulators of pathological and physiological processes'24-126, In vivo imaging
approaches reveal the time and location of EV-subtype release and the biological fluids

in which they are distributed or accumulate. This “hot spot” mapping could optimize
strategies to timely harvest the most relevant EVs for diagnosis or disease monitoring.
High-resolution imaging of injected EVs purposed for drug delivery can likewise reveal EV
pharmacokinetics (half-life, biodistribution, clearance), fate, and effects on recipient cells
in real-time. This supports the development of engineering and administration protocols
for efficient biodistribution and targeting, minimal clearance, and improved drug delivery
efficiency in clinical practice. Monitoring EV dynamics in vivo will also identify drug
targets for modulating EV release, uptake and degradation, influencing pharmacokinetics
and EV-intrinsic functions. Thus, in vivo imaging approaches will not only provide

crucial insight into fundamental aspects of the EV lifespan but will also benefit clinical
development of EV-based drug delivery systems127.

The future of the field critically depends on a systematic approach comparing the pros

and cons of each EV labeling and imaging strategy, in vitro and in vivo, to establish their
relevance and determine good practices. We foresee development of important synergies
between imaging methods and other techniques such as synthetic biology tools to investigate
EV biology in vivo; for instance, by controlling and validating EV secretion and fate in vivo
and to facilitate downstream analysis of specific EV subpopulations ex vivo. Imaging is now
part of the toolbox of scientists studying EVs, who will work with other nanoscientists to
further elucidate the biology and therapeutic applications of EVs.
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Box 1 |
Glossary
Glycan extended trees.

Protein modification involving attached polymerized glycans that possess structural
and/or modulatory function (for example, ligand binding).

Lipid membrane dye.

Lipophilic fluorescent dye that integrates in lipid membranes.

EV subtype.

EV with specific subcellular origin, size, and/or composition (Table 1).
Tetraspanin.

Family of membrane proteins with four transmembrane domains enriched in EVs.
Inner leaflet.

Cytosol- or EV-lumen-facing layer of a lipid bilayer.

Fluorescent complementation.

A technology used to validate protein interactions through the association of
complementary fluorescent protein fragments attached to components of the same
macromolecular complex.

Steric hindrance.

Here, spatial extent of an exogenous label preventing native interaction(s) of the labeled
protein.

EV cargo.
Any molecule (lipid, protein, metabolite, genetic material) shuttled within or on EVs.
CLEM.

Imaging technique to correlate (live) light microscopy with ultrastructural information
obtained on the same sample after fixation.

Diffraction limit.

Theoretical limit of optical microscopes to distinguish objects separated by a lateral
distance less than half of the wavelength used.

Photobleaching.

Photon-induced alteration of a fluorophore that causes it to permanently lose its ability to
fluoresce.

Phototoxicity.

Photon-induced damage to cellular macromolecules that impairs sample physiology.
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Intraluminal vesicles.
Vesicles formed inside endosomes and precursors of canonical exosomes (Table 1).
3D microenvironment.

Local environment surrounding a cell, consisting of ECM, soluble factors, and other
cells.

Genetraps.

Here, insertion of fluorescent tag such that the labelled protein is expressed under its
endogenous promoter.

Lectins.
Saccharide binding proteins.
Midbody remnants.

Condensed membrane structure derived from the intercellular bridge that is left over after
cell division.

V-AT Pase.
Transmembrane proton pump functioning to acidify intracellular compartments.
Back-fusion.

Process in which ILVs or internalized EVs fuse with the late-endosomal limiting
membrane, exposing their lumen to the cytosol and delivering their luminal content to the
cytoplasm of recipient cells.
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a EV visualization in D. melanogaster
synaptic boutons
Koles et al. 2012 (ref. 128)

EV visualization in D. melanogaster
wing disc
Gross et al. 2012 (ref. 63)

Single EV visualization in D. rerio
Verweij et al. 2019 (ref. 17)
(endogenous EVs)

Hyenne et al. 2019 (ref. 19)
(tumor EVs)

Jiang et al. 2019 (ref. 2) (migrasomes)

‘Shed vesicles’
Trams et al. 1981
(ref. 132)
F"?;E:“g]g{‘gﬂ:f o First MVB imaged 1 - -
Nunez et al. 1974 MVB fusion with PM
Woll'et al-1367 (ref. 131) Harding et al. 1983
{Fet.130) ref. 10)

Live EV detection in D. rerio

Live EV detection in C. elegans
Wehman et al. 2011 (ref. 68)

Yang et al. 2015 (ref. 135)
(injected EVs)

EV visualization in C. elegans
Liegeois et al. 2006 (ref. 127)

EV visualization in
Gallus gallus CAM
Sung et al. 2015 (ref. 47)

(

Exosomes from blood
Johnstone et al. 1989
(ref. 133)

Visualization of distinct
EV populations
Heijnen et al. 1999 (ref. 134)

EM of fixed samples
Live imaging at organ scale
Live imaging at vesicle scale

MRI, nuclear imaging, scanner microscopy

EV visualization in M. musculus
Zomer et al. 2015 (ref. 22)
Lai et al. 2015 (ref. 34)

Live EV detection in Mus musculus
Takahashi et al. 2013 (ref. 38)

Standard fluorescence microscopy

10 cm 1cm 1 mm 100 pm

SIM, STED, cryo-soft X-ray, PALM, STORM, LLSM
EM, CLEM

10 nm 1nm

Mouse Lower organism Cell Organelles EV  Single Protein
tissue tissue (MVB) cluster EV Membrane bilayer

Fig. 1|. Timeline of EV imaging milestones and broad overview of microscopy techniquesto
resolve EVsat different scales.

a, Timeline of imaging milestones in EV research. EM, electron microscopy. Refs.
210,17,19,22,34,38,47,63,68,128,129,131-136 |y Schematic of the resolution range of different

microscopic approaches to resolve EVs at increasing resolution.
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Fig. 2|. Tagging strategiesto image EV production.
a, EVs are diverse double-leaflet membrane-enclosed structures generated from the PM
(microvesicles, apoptotic bodies, oncosomes, exophers, enveloped viruses, and migrasomes),
from endosomal compartments (exosomes and enveloped retroviruses), and from autophagic
compartments (secretory autophagosomes). The origin of exomeres is still uncertain. b—
d, Tagging strategies to image EVs. Cytoplasmic labeling facilitates pan-EV tagging by

labeling the cell cytosol and the lumen of any EVs (b). Right, large EVs released from
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MDA-MB-231 cells expressing Dendra2 in mice mammary glands?2. Arrows, EVs. Scale

bars: 10 mm (left image), 1 mm (right image). Membrane labeling tags multiple EV

subtypes (c). Right, confocal microscopy of live PalmGFP-expressing 293 T cells releasing
EVs34. Arrows, bud-like structure from the surface; arrowheads, processes extending from
cells. Expressing tagged cargo proteins allows the tracking of EV subtypes (d). Right, live
imaging of a burst of CD63-pHIuorin fluorescence at the HeLa cell surface (arrows, fusion

event), overlaid using CLEM (top right image) to observe an MVB fusing with the PM
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to release exosomes (bottom right image)*°. e, Expression of degron-tagged fluorescent
proteins allows EV tagging while cytosolic fluorescence in the source cell is degraded.
Right, PH::CTPD-labeled EVs released from the unlabeled PM in C. elegans®®. Scale bar,
10 um. f, Targeting of EV surface proteins by antibodies. Right, optical-EM correlation of
M. musculus T cell that released EVs (red)3. Arrowhead, released microvesicles. Single EV
imaging by dSTORM analysis of antibody staining®* (right image and insets).
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a Imaging EV distribution in vivo

Production of endogenous EVs
D. rerio (d), C. elegans (e), D. melanogaster (f)

Injection of exogenous EVs
M. musculus (b), D. rerio (c)

Biological fluids ¢

Crossing biological
barrier )

N D e | D] | T —

HEK293T CD63-ThermoLuc EVs Untreated

LOV-1::GFP1

C. elegans, endogenous EVs

Brain

kdrl:mCherry/CD63-pHluorin

Lungs 4
and heart |

Spleen

Liver

Kidneys

D. rerio, endogenous EVs

D. rerio, exogenous EVs D. melanogaster, endogenous EVs

M. musculus, exogenous EVs

Fig. 3|. Imaging EV propagation in vivo.

a, EV biodistribution can be mapped in the complex architecture of an organism after
injection of labeled exogenous EVs or tagging endogenous EVs in situ. The in vivo fates

of EVs (white boxes) are shown. b—d, Imaging using injected or endogenous EVs in live
animals. b, EV accumulation tracked at the organ scale using CD63-ThermoLuciferase

in mice’3. ¢, EVs interacting with endothelial cells (green, top) or macrophages (green,
bottom) tracked live in transparent zebrafish D. rerio; EV circulation in comparison to red
blood cells (RBCs, red, middle)1°. d, Endogenous EV clearance by scavenger endothelial
cells and macrophages in D. rerio (top panels); inset of macrophage internalizing EVs
captured from blood flow by SEC (bottom left); and IEM confirms the vesicular nature of
the CD63-pHIuorin signal in situ (bottom right)17. Arrow, macrophage protrusion; asterisks,
macrophages. e, Fluorescently tagged EV cargo proteins track released EVs in C. elegans®’.
Red arrows, EVs surrounding the head and tail. Scale bars, 10 um. f, Fluorescently tagged
EV cargo proteins track EVs released from giant secretory MVB-like compartments in D.
melanogaster+30.
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phagocytosis
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Degradation, pH-sensitive or
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Fig. 4 |. Tagging strategiestoimage EV interaction, uptake, and fate.
a, Different tagging strategies (blue box) reveal distinct aspects of EV—cell interactions.

TEV, tobacco etch virus. b—e, Imaging strategies to track the fate and functions of

EVs. b, Correlative light and scanning electron microscopy shows GFP-HAS3-labeled
EVs interacting with the PM of receiving cells1®. Arrowhead, large EV; arrow, cluster

and individual EVs of different sizes. ¢, Tracking uptake of endogenous CD63-pHluorin-
labeled EVs in the D. reriovasculaturel’ (top); and tracking double-labeled pHIuorin-
CD63-mScarlet EVs inside and outside HT1080 cells* (bottom). VLDL, very low density
lipoprotein. Arrows, internalized EV (top). White arrows, external EVs; purple arrows,
internal EVs (bottom). d, Ex vivo mapping of EV mRNA using a Cre recombinase strategy
in the mouse brainl18, g, Correlative light and electron microscopy shows Membright Cy3
lipid dye-labeled EVs accumulating in endolysosomes in D. rerio patrolling macrophages.19
dpf, days post-fertilization; LEL, late endo-lysosome; RBC, red blood cell.
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