Team Chevaleyre / Piskorowski

Synaptic plasticity and neuronal circuits


Team leader :  Vivien Chevaleyre  |   Rebecca Piskorowski

Team member :  Sadiyah Cassim  |   Laetitia Chauviére  |   Maithé Loisy  |   Eleni Paizanis  |   Vincent Robert  |   Ludivine Therreau  |   Cécile Viollet


 
Our team is interested in understanding the micro-circuits and synaptic plasticity underlying the formation of new memories.  The hippocampus is a brain region that has long been considered to be central in memory storage and retrieval. Our research is focused on area CA2, a region that receives direct synaptic input from intra- and extra- hippocampal structures such as the cortex and hypothalamus, and has been shown to be central in social memory and encoding spatial information during immobility. Long overlooked, this small hippocampal region is emerging as a distinct region of the hippocampus with unique properties and cellular composition. Furthermore, neurons in area CA2 are uniquely vulnerable during psychiatric disease onset such as schizophrenia and dementia. We use a combination of techniques including electrophysiology, optogenetics, imaging and behavior to investigate how environmental factors and experience alter the physiology and plasticity of cells in area CA2, and then determine the consequences of these changes on overall hippocampal function under both normal conditions and during disease.

 

5 main publications

1 / Chevaleyre V, Piskorowski RA. “Hippocampal Area CA2: An Overlooked but Promising Therapeutic Target.” Trends Mol Med. 2016 Aug;22(8):645-55.

2 / Nasrallah K, Piskorowski RA, Chevaleyre V. “Bi-directional interplay between proximal and distal inputs to CA2 pyramidal neurons.” Neurobiol Learn Mem. 2016 Jun 25. pii: S1074-7427(16)30099-5. doi: 10.1016/j.nlm.2016.06.024.

3 / RA Piskorowski, Nasrallah K., Diamantopoulou A., Mukai J, Hassan S.I., Siegelbaum SA, Gogos JA, Chevaleyre V. “Age-dependent specific changes in area CA2 of the hippocampus and social memory deficit in a mouse model of the 22q11.2 deletion syndrome.” Neuron. 2016. Jan 6;89(1)163-176.

4 / RA Piskorowski and V Chevaleyre. “Delta-opioid receptors mediate unique plasticity onto parvalbumin-expressing interneurons in area CA2 of the hippocampus.” J. Neuroscience. 2013. Sept 4;33(36):14567-78.

5 / Chevaleyre V, Piskorowski R. “Modulating excitation through plasticity at inhibitory synapses.” Front Cell Neurosci. 2014. Mar 28;8:93.

 

 

Why study hippocampal area CA2? This relatively small yet under-studied region in the hippocampus receives powerful excitatory sensory information from the cortex and dentate gyrus. Unlike areas CA1 and CA3, CA2 receives input from hypothalamic regions that are very active during emotional and social context, resulting in the release of neuromodulators such as vasopressin and oxytocin that are known to effect learning and social interaction. Furthermore, the pyramidal neurons and interneurons of area CA2 have unique circuitry, physiology and molecular make-up that sets this region apart from other hippocampal areas. The receptors for numerous neuromodulators including enkephalin, vasopressin, estrogen, somatostatin, corticoids, substance P and oxytocin are either highly enriched or uniquely expressed in this hippocampal region. CA2 pyramidal neurons strongly project to areas CA3, CA1, and to external hippocampal structures including the hypothalamus and septum. Thus, the neurons in area CA2 are poised to modulate memory formation and act on long-range brain network connections during emotionally laden tasks. Supporting this hypothesis are the recent findings that area CA2 is critical for social memory (Hitti et al, Nature 2014) and the re-expression of vasopressin 1b receptors only in CA2 pyramidal neurons in a vasopressin 1b receptor KO mouse can rescue aggressive behavior (Pagani, Mol Psychiatry 2014).

Entire_slice_CA1biocytin_CA2channel

 

Our goal is to better understand how area CA2 is incorporated into the hippocampal circuit and under which circumstances this region is most active. Our team currently has a cutting-edge set of tools that allows us to examine the circuitry and physiology of the interneurons and pyramidal cells in area CA2 and the hypothalamus in adult mice. We routinely use electrophysiology, optogenetics and pharmacogenetics (i.e. DREADDs) to selectively excite or silence CA2 pyramidal neurons.  With these methods, our team has discovered a unique plasticity of inhibitory transmission that occurs in area CA2 (Piskorowski and Chevaleyre, 2013; Nasrallah et al 2015) that requires the activation of delta-opioid receptors.

 

Area CA2 shows marked vulnerability in multiple psychiatric disorders (Knable, Mol Psychiatry 2004). Reports from human post-mortem studies as well as research performed by our team have discovered that both interneurons and pyramidal cells undergo profound age-dependent changes in area CA2 (Piskorowski et al, Neuron, 2016). Thus, a better understanding of area CA2 can have profound consequences not only for understanding learning and memory, but also for the understanding of psychiatric disease. Because of the unique molecular identity of neurons in area CA2, this region holds particular promise for the development of potential pharmacological treatments for the symptoms in numerous psychological disorders.

 

Recent Publications

 

Piskorowski RA and Chevaleyre V. “Interneurons in Synaptic Plasticity and Information Storage.” Learning and Memory: A Comprehensive Reference. Chapter 14; Volume 4. Mechanisms of Memory. Elsevier Press. Oxford.  In press.

Thomas D Prévôt, François Gastambide, Cécile Viollet, Nadia Henkousl, Guillaume Martel, Jacques Epelbaum, Daniel Béracochéa, Jean-Louis Guillou. “Roles of Hippocampal Somatostatin Receptor Subtypes in Stress Response and Emotionality.” Neuropsychopharmacology in press, accepted article online 16 December 2016. doi:10.1038/npp.2016.281.

Chevaleyre V, Piskorowski RA. “Hippocampal Area CA2: An Overlooked but Promising Therapeutic Target.” Trends Mol Med. 2016 Aug;22(8):645-55.

Vivien Chevaleyre and Rebecca Piskorowski, « Schizophrénie: une nouvelle piste dans la compréhension des déficits de mémoire sociale.» Biofutur, No 375 (April 2016) pp48-51.

Nasrallah K, Piskorowski RA, Chevaleyre V. “Bi-directional interplay between proximal and distal inputs to CA2 pyramidal neurons.” Neurobiol Learn Mem. 2016 Jun 25. pii: S1074-7427(16)30099-5. doi: 10.1016/j.nlm.2016.06.024.

RA Piskorowski, Nasrallah K., Diamantopoulou A., Mukai J, Hassan S.I., Siegelbaum SA, Gogos JA, Chevaleyre V. “Age-dependent specific changes in area CA2 of the hippocampus and social memory deficit in a mouse model of the 22q11.2 deletion syndrome.” Neuron. 2016. Jan 6;89(1)163-176.

Y Maury, Côme J, Piskorowski RA, Salah-Mohellibi N, Chevaleyre V, Peschanski M, Martinat C and Nedelec S. “Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes.” Nature Biotechnology. 2016. Jan; 33(1):89-96. doi: 10.1038/nbt.3049.

K Nasrallah, Piskorowski RA, Chevaleyre V. “Inhibitory plasticity permits the recruitment of CA2 pyramidal neurons by CA3.” eNeuro. Jul 2015. DOI: 10.1523/ENEURO.0049-15.2015

Martel G., Simon A., Nocera S., Kalainathan S., Pidoux L., Blum D., Leclère-Thurbant S., Diaz J. , Geny D., Moyse E., Videau C., Buée L, Epelbaum J., Viollet C. Aging, but not Tau pathology, impacts olfactory performances and somatostatin systems in THY-Tau22 mice, Neurobiology of Aging 2015 Feb;36(2):1013-28.

Chevaleyre V, Piskorowski R. “Modulating excitation through plasticity at inhibitory synapses.” Front Cell Neurosci. 2014. Mar 28;8:93.

RA Piskorowski and V Chevaleyre. “Delta-opioid receptors mediate unique plasticity onto parvalbumin-expressing interneurons in area CA2 of the hippocampus.” J. Neuroscience. 2013. Sept 4;33(36):14567-78.

Pavlopoulos E; Trifilieff P; Chevaleyre V; Zairis S; Fioriti L; Malleret G; Kandel E.R. “Non-Proteolytic Ubiquitination by Neuralized1 Leads to Activation of CPEB3: A Novel Function of the Ubiquitin System in Synaptic Plasticity and Memory Storage.” Cell. 2011. 147(6): 1369-83.

RA Piskorowski and V Chevaleyre. “Synaptic integration by different dendritic compartments of hippocampal CA1 and CA2 pyramidal neurons.” Cellular and Molecular Life Sciences. 2012. Jan; 69 (1):75-88.

P Trifilieff, Rives ML, Urizar E, Piskorowski RA, Vishwasrao H, Castrillon J, Schmauss C, Slättman M, Gullberg M and Javitch JA. “Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine D2-adenosine A2A receptor complexes in the striatum.” Biotechniques. 2011. Aug; 51(2):111-8.

Lepousez G., Csaba Z., Bernard V., Loudes C., Videau C., Lacombe J., Epelbaum E. and Viollet C. “Somatostatin interneurons delineate the inner part of the External Plexiform Layer in the mouse main olfactory bulb.” 2010. J. Comp. Neurol. 518:1976–1994.

Lepousez G., Mouret A., Loudes C., Epelbaum J. and Viollet C. “Somatostatin contributes to in vivo gamma oscillation modulation and odor discrimination in the olfactory bulb.” J. Neurosci. 2010. 30(3):870–875

Gastambide F, Lepousez G, Viollet C, Loudes C, Epelbaum J, Guillou JL. Cooperation between hippocampal somatostatin receptor subtypes 4 and 2: Functional relevance in interactive memory systems. Hippocampus (2009) Jul 21. 09-1 Gastambide F. , Viollet C. , Lepousez G., Epelbaum J., Guillou J.L., Hippocampal SSTR4 somatostatin receptors control the selection of memory strategies, Psychopharmacology 2009. vol. 202 (1-3) 153-163